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ABSTRACT 
The fv −2  models of Durbin and the new fv −2  model of 

Jones et al.  were used to compute the blade heat transfer for 
the transonic cascade of Giel et al.. Three different 
experimental cases were considered. Calculations were 
performed using the Glenn-HT code modified so that it solves 
these turbulence model equations using an implicit scheme. An 
iterative matrix solver, namely GMRES was used for this 
purpose. Comparisons were made with previously published 
results using the SST model and a simple algebraic model 
modified for the stagnation heat transfer effects and transition 
effects. The results, albeit limited to the present case, show that 
the fv −2   model of Durbin provides good predictions on the 
pressure surface. But there is some discrepancy between the 
suction surface heat transfer predictions and experimental 
measurements. The newer model of Jones et al. requires further 
modification before it can be routinely used for blade heat 
transfer. 

 
INTRODUCTION 
The most common means of modeling turbulence in CFD 

codes today is the use of two equation eddy viscosity models. 
The k-ε  and k-ω   models are the most frequently used 
models of this type. Turbulence modeling is commonly faulted 
as the cause of deviations from measured data in the prediction 
of blade heat transfer. Turbulence models are designed to 
predict shear flows and often do predict the correct level of heat 
transfer for such flows. Prediction of blade heat transfer 
however includes prediction of heat transfer in the stagnation as 
well as end wall; near end wall; near the tip and the tip heat 
transfer. This involves complex flow fields, which are different 
from the simpler shear flows. In two papers, Medic and Durbin 
[1,2] showed the ability of the fv −2  model to produce 

accurate heat transfer predictions with and without  the 
presence of film cooling. They also put forth modifications to 
two-equation models, which, if implemented, would help 
improve heat transfer predictions in the stagnation region. The 
necessity for such modifications comes from the fact that two-
equation models over-estimate the stagnation flow turbulent 
energy leading to an over-estimation of the stagnation heat 
transfer. This, they suggest, could be due to one of two causes; 
an under-estimation of the turbulent dissipation, or the over-
estimation of eddy-viscosity in the stagnation region.  

One difficulty with the fv −2  model has been the 
stiffness of the equations and difficulty of convergence. This 
has been addressed by Lien and Durbin [3] by modifying the 

equations for  2v  and f so that the boundary condition on f 
changed from depending on the other variables to being trivial. 
Another approach was taken by Jones et al. [4] to improve the 

robustness of the fv −2   model. This approach was to 
maintain the philosophy of the formulation but to use ω  
instead of ε , which is known to be non-singular near walls. 
We have not used Lien and Durbin’s modification in our work 
because we were able to obtain converged solutions for the 
cases we considered by using an implicit solution method.  
However, we have included the model of Jones et al. [4] in our 
computations and will show comparisons with predictions of 

the original  fv −2   model.   
More sophisticated models, which do not use the eddy 

viscosity hypothesis and directly model the Reynolds stresses, 
are good candidates for use as well. Unfortunately, these 
models, which solve transport equations for Reynolds stresses 
and an equation for ε  ,are CPU-time consuming, and difficult 
to converge. In recent years, a new Reynolds stress model, 
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called Stress-ω , which is based on ω  equation in place of ε , 
has been devised by Wilcox [5] with very good numerical 
properties.  

The various versions of fv −2  model and the Stress-ω  
model have been implemented into the Glenn-HT code [6] and 
have been used to calculate the rate of blade heat transfer for 
the transonic cascade of Giel et al. [7]. We will show results of 

our calculations with emphasis placed on the fv −2  models. 
We will also compare the present results with the calculations 
of Garg and Ameri [8] (which use the Shear Stress Transport 
(SST) model of Menter [9]), and those of Giel et al. [7] (which 
were obtained using an algebraic (zero equation) model). A 
single comparison with the stress-ω  Reynolds stress model 
will also be presented.   

The literature contains a reference to Kalitzin and 
Iaccarino[10]  who have performed heat transfer calculations 
on the endwall of the blade cascade considered in this paper. 
The results to be presented in this paper are only of the heat 
transfer on the blades and not on the endwall. This is because 
the experimental conditions imposed on the boundaries for the 
blade heat transfer and endwall heat transfer were different. As 
such, a comparison with the endwall heat transfer results 
requires would require a different set of computations.  

NOMENCLATURE 
Cp   specific heat 
D leading edge circle diameter 
f    variable related to turbulence energy redistribution 

Fr )/(Re/1 khDD  

h   heat transfer coefficient qw/(Tw-Taw) 
k  turbulent kinetic energy, also thermal conductivity 
M Mach number 
Pk turbulence production from (3) 
Pr Prandtl number 
Re Reynolds number 

r recovery factor= 31Pr   
St  Stanton number, equation 13 
U magnitude of velocity 
V reference velocity (inlet) 

2
v  velocity scale for turbulent transport 
y distance to the nearest wall 
 
Greek Symbols 
δ  inlet boundary layer thickness 
ε  dissipation rate of turbulence 
γ  specific heat ratio 
ν  fluid kinematic viscosity 
ρ  fluid density 
ω  specific dissipation rate 
 
Subscripts  
aw  adiabatic wall value 
ex  exit value 
in  inlet value 
is  isentropic value 
o  stagnation value 
t  turbulent value 

w  wall value 
 
 

    FORMULATION OF THE TURBULENCE MODELS 
Formulations of the SST model and the algebraic model 

have been given by Garg and Ameri [8] and Giel et al.[7] along 
with the results to which we will be referring. The equations for 
the Stress-ω  model are given in Wilcox [5]. Formulations of 

two versions of the fv −2  model will be repeated here 
following Behnia et al. [11] and Medic and Durbin [1, 2]. The 
versions are very similar, and differ only in definition of some 
of the constants. One important difference is that one version 
uses the distance to the wall and the other version does not use 
the distance to the wall. In addition, the ω−k  version of the 

fv −2  model hereafter referred to as fv −2 - ω−k  model of 
Jones et al. [12] will also be repeated here. 
    νννν2-f Model: This model is a simplification of the Elliptic 
Relaxation Reynolds Stress model of Durbin [13]. The 
simplified model requires the solution of three transport and 
one elliptic (relaxation) equation.  The system of the Reynolds 
stress equations is replaced by a transport equation for a 

velocity scalar ( 2v ) and an elliptic equation (for f). In the case 
of the full Reynolds stress model ijf , would simulate the effect 

of the walls on the Reynolds stress components ji vv .  The 

equations for turbulent kinetic energy and the dissipation rate 
are: 
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turbulence time scale  εkT =  is modified near the walls. 
Upon exerting realizibility constraint for the stagnation flow 
region, the time scale becomes: 
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 Eddy viscosity is computed from the following:  

   TvCt
2ρµ µ=                                                                   (5) 

The constants are 42
1 ])2/(.1/[25.03.1 LyC ++=ε  for the 

original version (hereafter called V1) which uses distance to the 

walls and )/046.0.1(4.1 2
1 vkC +=ε  for version 2 (V2) which 

does not use the distance to the walls.  Other constants 
are; 92.12 =εC , 19.0=µC , 3.1=εσ ,  6.0=α . 

The equation for 2v  is given as: 
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f , which represent a relaxation parameter that brings the 
effect of the walls into the equations, follows the elliptic 
equation: 
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The following expression for the turbulent length scale applies: 
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 Values of other constants used above are: ,3.0=LC 70=ηC  

(for version 1) and 23.0=LC and 85=ηC   (for version 2).  

Also 4.11 =C and  3.02 =C . 
Wall boundary conditions: For solid walls with y  

denoting the distance to the wall of the first cell center, we have 
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             ν ν ν ν2222-f-k-ωωωω model of Jones et al.  Jones, Acharya and 
Harvey [4] recast the formulation of fv −2 model, basing it on 
ω  instead of ε , in order to increase the robustness of the 
model.  The following equation for ω  was used.  
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The following relationship was proposed by Jones et al. 
between ω and ε  
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Jones et al. [4] found a value of 7.0=n to give the best 
results for the cases they considered.  Here eddy viscosity is 
defined using equation (5) and the other coefficients are: 
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Transition modeling 
With the exception of Giel et al. [7] who included a 

transition model with their algebraic turbulence model, none of 
the other models has physically-based transition modeling 
incorporated in them. This is an important consideration 
affecting the heat transfer solution, as we will see later in the 
results section. 

COMPUTATIONAL METHOD 
The simulations in this study were performed using a 

multi-block computer code called Glenn -HT [6]. This code is a 
general-purpose flow solver designed for simulations of flows 
in complicated geometries. The code solves the full 
compressible Reynolds averaged, Navier-Stokes equations 
using a multi-stage Runge-Kutta based multigrid method. It 
uses the finite volume method to discretize the equations. The 
code uses central differencing together with artificial 
dissipation to discretize the convective terms. The overall 
accuracy of the code is second order. For heat transfer, unless 
the Reynolds stress model is used, a constant value of 0.9 for 
turbulent Prandtl number tPr  is assumed. Viscosity is a 
function of temperature through a 0.7 power law (Schlichting 
[14]) and pC is taken to be a constant. In the case of a 

Reynolds stress model, the Generalized Gradient Diffusion 
Hypothesis (GGDH) (given in for example Iacovides et al. 
[15]) was used. 

The k-ω  model and Stress-ω  model lend themselves 
nicely to solution by explicit schemes, although pointwise 
coupling of the equations may be necessary.  However, our 
basic explicit solution methodology proved to be ineffective for 
solving the fv −2  model equations. Therefore, the turbulence 
equations were discretized and written in an implicit form and 
solved using an iterative matrix solver algorithm namely, 

GMRES (Wington et al. [16]).  The k -ε equations and 
2

v and 
f were coupled in pairs through their solid wall boundary 
conditions.  

RESULTS  
 
Grid and Geometry The blade for the transonic-blade 

cascade has an axial chord of 12.7 cm and has a pitch of 13 cm. 
The blade span is 15.24 cm. The inlet flow angle is 63.6 
degrees and the design flow turning angle is 136 degrees. The 
blade was designed to yield a highly three-dimensional passage 
flow to be used for CFD validations. A multi-block grid similar 
in topology to the one shown in Fig. 1 was used for the 
calculations presented in this paper. The grid in Fig.1 has been 
coarsened for better visualization. The grid is only for half the 
span since a symmetry boundary condition was used at the mid 
span. The grid contains approximately 800,000 nodes and is 
refined near the walls to better capture the wall heat transfer. 
This is done by choosing the non-dimensional distance ( +y ) to 
be near unity. There were 68 grid cells covering the hub to mid-

span in the spanwise direction. The grid was used for the 2v - f 
model and stress-ω  model calculations.  The primary reason 
for using a grid with so many nodes was the requirements 
placed on grid convergence by the Stress-ω  Reynolds stress 
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model. This results in a grid for the fv −2  model calculations 
that is very fine. For comparison, the grid density found to 
provide grid convergence for the SST model and the algebraic 
model from [7] and [8] were 360,000 and 660,000 cells. The 
latter used 48 cells in the spanwise direction. 

Flow Conditions 
 The experiment of Giel et al.’s [7] matrix of cases consists 

of eight combinations of independent variables. We only pick 
three of those conditions here for analysis. The cases 
considered all have an inlet Reynolds number of one million. 
Conditions are given in the table below: 

Table 1: Run Conditions 

Case Rein Mex Tuin Length scale Inlet δ , % 
of  half span 

1 610  0.98 0.09 0.23 26 

2 610  0.98 0.0025 0.01 40 

3 610  1.32 0.09 0.23 26 

     
 Heat Transfer  

Figure 2(a) shows the experimentally obtained results for 
the blade heat transfer in case-1 of the above table. The data 
was obtained from a calibrated resistance layer in conjunction 
with a surface temperature measured by calibrated liquid 
crystals. Figure 2(b) show the calculation results using the 

fv −2  model for the blade surface. The abscissa is the wetted 
distance normalized by the axial chord. The wetted distance is 
measured from the geometric stagnation point. The ordinate is 
the normalized span. Heat transfer is plotted in terms of Stanton 
number defined as: 

=St
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2
,0 )1(5.01

1

isin

aw

M

r
r

T

T

−+
−+=
γ

                                   (13) 

The figure shows that the heat transfer on the pressure side 
of the blade is quite two-dimensional. The distribution of the 

Fig. 3   Comparison of four turbulence models for 
the Transonic Blade at the mid span (Case 1) 

Fig. 2   Surface heat transfer in terms of Stantonx1000, 

for case 1 of Table 1, (a)  from Giel et al.[3] and (b) 

predicted using 
2

v -f (version 2) model. 

a 

b 

Fig.1  Grid for the hub and blade of the 
Transonic Cascade 



 5 Copyright © 2004 by ASME 

Fig. 4 Prediction of heat transfer for Case 1 using 

the two versions of the fv −2 model and comparison 
with the SST model from Garg and Ameri[8] and 

Algebraic model from Giel et al. [7] 

 

heat transfer rate on the suction side however attests to the 
three-dimensionality of the flow. It is possible to distinguish the 
region of the blade dominated by the endwall secondary flow 
starting from the low pressure point on the suction side where 
the pressure side leg of the horseshoe vortex meets the adjacent 
blade. At this location, the level of heat transfer is quite 
elevated and according to the experiments of Giel et al. [7] 
reaches the highest level on the entire blade. 

Figure 3 shows the mid span heat transfer results obtained 
for the transonic-blade with four turbulence models. The results 
were obtained using; an algebraic model, the Shear Stress 
Transport (SST) model of Menter [9], the Stress-ω  model, and 

the 2v -f model. The algebraic model is that of Chima et al. [17] 
and the results are from Giel et al. [7]. The results of the 
algebraic model should be viewed as representing the particular 
model used by Giel et al. The SST model is an amalgam of the 
k-ω  and the k- ε  models. The former is activated in the near 
wall region and the latter in the outer wake and free shear 
layers. The SST model results are from Garg and Ameri [8]. 

It is obvious from Fig. 3 that the Stress-ω  model over-
predicts the heat transfer on the pressure side and greatly over-
predicts the heat transfer in the stagnation region. This behavior 
has been addressed by Durbin [18] where he referred to this 
phenomenon as the “stagnation point anomaly.”  The fact that 
the Stress-ω  model also suffers from the stagnation point 
anomaly was initially a surprise. Surveying the literature, it 
becomes apparent that this has been, and currently is a research 
problem concerning Reynolds stress models [19]. Use of the 
remedies suggested by Medic and Durbin do improve the 
stagnation point heat transfer but cause a further deterioration 
of the prediction on the rest of the blade. In light of these 
issues, no further calculations with the stress-ω  model were 
made. 

In summary, Fig. 3 shows that, the fv −2   model 
performs reasonably well and that further investigation is 
justified. 

Figure 4 shows the comparisons for case 1 of Table 1. The 
top figure shows comparisons for the 50% (mid) span while the 
middle and the bottom graphs show comparisons of 25% and 

10% span. Both versions of the fv −2  model are used and 
shown here. As explained earlier, version-1 uses the distance to 
the wall while version-2, does not. There is some difference 
between the predictions from the two models.  Version-1 
provides a prediction that is superior to that of version-2, 
especially on the pressure side.  The SST model also does well 
on the pressure side. The algebraic model’s prediction of heat 
transfer on the pressure side is too low. In the near leading edge 

of the suction side, at 50% span,  fv −2  models appear to do 
better than the SST model and the algebraic model. For the 

25% and 10% span, the fv −2 model does not provide a good 
prediction on the suction side. This is because the level of heat 
transfer on the low pressure area on the suction side is 
underpredicted (Fig. 2). For the 25% and 10% span locations, 
the algebraic model provides better predictions than the  fv −2  
models on the suction side.  

In Fig. 5 results of the application of the fv −2  to case-2 
(Table 1) are shown. This case has a lower incoming turbulence 
intensity and a much thinner incoming boundary layer 
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compared to case-1. The calculated stagnation values appear to 

be too low. Note that the approaching flow is quite calm and 
the turbulence intensity is very low. For laminar flows, as this 
flow should be around the leading edge, the heat transfer results 
should have been better predicted. 
   In a recent paper, Boyle et al.[20] have reported their findings 
regarding the stagnation data for this case. They calculated the 
Frossling (Fr) number from the measured data to be 1.4. In 
reality, Fr should be near unity given the state of the incoming 
flow. That would correct the Stanton number to the value 
shown as a dark circle on Fig. 5, which would a better match 
with the predictions. 
         Agreement on the pressure side is quite good at all three 
locations. The suction side heat transfer only qualitatively 
agrees with the calculated data for the mid span. When using 
the fv −2  and SST models the transition starts too early. With 
the algebraic model, the transition starts somewhat downstream 
of the location suggested by the experimental data. Overall, the 
algebraic model provides the best agreement. Even though we 
do not expect to find a case with such low turbulence intensity 
upstream of the blade in practice, the sensitivity of the models 
to the level of turbulence is encouraging. 

Figure 6 presents the results using the ω−−− kfv2  
model. On the suction side,the flow apparently is fully turbulent 
immediately past the stagnation region. This is in contrast to the 
experimental data, which clearly shows a laminar region in the 
leading part of the blade. Agreement with the data is good past 
the transition location for all spanwise locations, but the 
agreement for the pressure side and the leading edge region is 
not very satisfactory.  

Figure 7 shows the results for the case 3 (Table 1), namely 
high turbulence intensity and higher exit Mach number. This 
case is especially interesting because of the existence of the 
reflected shock on the suction side downstream of the throat. 
The pressure side heat transfer predictions agree with the data, 
with the exception of the algebraic model. The mid span heat 

transfer on the suction side is predicted best with the fv −2  

Fig.5 Prediction of heat transfer for Case 1 

using the two versions of the fv −2  model and 
comparison with the SST model from Garg and 

Ameri [8] and Algebraic model from Giel et al. [7]. 
Corrected stagnation value is shown with     

Fig. 6   Calculations with ω−−− kfv2  model of 
Jones et al. [4] for case 2. Corrected stagnation 

value is shown with 
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Fig. 7 Prediction of heat transfer for Case 3 using 

the two versions of the fv −2  model and comparison 
with SST model from Garg Ameri [8] and algebraic 

model from Giel et al. [7] 

model. At the other two spanwise locations, the fv −2  model 

is inferior to the algebraic model and fares worse than the SST 
model on the pressure side. In fact, the variation due to the 
shock boundary layer interaction is, for the most part, missed 
by all the models, except for the algebraic model.  

Figure 8 shows the prediction as obtained using the 
ω−−− kfv2  model with comparison to version-1 of the  

fv −2  model. The pressure side and the stagnation region heat 
transfer are over-predicted. Agreement for the mid span heat 
transfer is quite good, but the increase in the rate of heat 
transfer due to the secondary flow near the endwall is not 
captured. Again, the effect of the reflected shock on the suction 
side is not captured.  

 

CONCLUSIONS 
The transonic-blade data of Giel et al. [7] was used to test 

some of the various versions of the fv −2  model available to 

date. The results obtained using Durbin’s fv −2  show some 
improvement over the other models but the overall 
improvement in the heat transfer predictions was found to be 
modest. Specifically, the improvements included the 
consistently good pressure side predictions and improved 
predictions of the heat transfer on the suction side immediately 
downstream of the stagnation region.  For the suction side heat 
transfer, the fv −2 model did not fully capture the three-
dimensional heat transfer effect on the blade. Specifically, the 
heat transfer rise due to the effect of the pressure  side leg of 
the horseshoe vortex on the blade suction side and near the 
endwall was underpredicted. Overall, version-1 of the model 
(the original model) performed better than the version-2 model. 

Fig. 8   Prediction of heat transfer for Case 3 using the 

two the 2v -f-k-ω  model of Jones et al. [4]  
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 As for the ω−−− kfv2 model, which was designed to be 

more robust numerically than the fv −2  models, it requires 
more refinement before it becomes a useful tool for predicting 
blade heat transfer.  
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